Topic 3

Resistors & Resistor Circuits

Prof Peter Y K Cheung Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/ E-mail: p.cheung@imperial.ac.uk

Resistor parameters and identification

- Resistors are usually colour coded with their values and other characteristics as shown here.
- They also come in different tolerances (e.g. ±0.1% to ±10%).
- Other important parameters are:
 - Power rating (in Watts)
 - Temperature coefficient in parts per million (ppm) per degree C
 - Stability over time (also in ppm)
 - Inductance (don't worry about this for now)
- Resistors can be made of different materials: carbon composite (most common), enamel, ceramic etc.

Resistor – Preferred values

- In theory, resistor values is a continuous quantity with infinite different values.
- In reality, resistor as a component exists within some tolerance (say, ±5% is common)
- Therefore there is NO reason to provide more than selected number of different resistor values for a given tolerance.
- The standard "preferred values" for resistors are given in this table for ±5% (most common), ±10% and ±20%, respectively designated as the E24, E12, E6 series.
- For example, if you need a 31.3kΩ resistor with tolerance of ±10%, you could use a 30kΩ E24 resistor (±5%) instead and still stay within the allowable tolerance.
- Therefore, when computing solutions resistor values for electronic circuits, it is silly to use precision with many digits.

Resistor Values				
E6	E12	E24		
(20%)	(10%)	(5%)		
10	10	10		
	10	11		
10	12	12		
	12	13		
	15	15		
15	15	16		
15	18	18		
		20		
	22	22		
22	22	24		
	27	27		
		30		
	33	33		
33		36		
	39	39		
	09	43		
	47	47		
47		51		
	56	56		
		62		
	68 68 82	68		
68		75		
		82		
		91		

Units and Multipliers

Quantity	Letter	Unit	Symbol
Charge	Q	Coulomb	С
Conductance	G	Siemens	S
Current	Ι	Amp	А
Energy	W	Joule	J
Potential	V	Volt	V
Power	P	Watt	W
Resistance	R	Ohm	Ω

Value	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р
10^{-15}	femto	f

Value	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	М
10^{9}	giga	G
10^{12}	tera	Т
10^{15}	peta	Р

Series and Parallel

<u>Series</u>: Components that are connected in a chain so that the same current flows through each one are said to be *in series*. R_2

- R₁, R₂, R₃ are in series and the same current always flows through each.
- Within the chain, each internal node connects to only two branches.
- R₃ and R₄ are not in series and do not necessarily have the same current.

Parallel: Components that are connected to the same pair of nodes are said to be in parallel.

- R₁, R₂, R₃ are in parallel and the same voltage is across each resistor (even though R₃ is not close to the others).
- R_4 and R_5 are also in parallel.

P52-53

Series Resistors: Voltage Divider

$$V_x = V_1 + V_2 + V_3$$

$$= IR_1 + IR_2 + IR_3$$

$$= I(R_1 + R_2 + R_3)$$

$$V_1 = \frac{IR_1}{I(R_1 + R_2 + R_3)}$$

$$= \frac{R_1}{R_1 + R_2 + R_3} = \frac{R_1}{R_1}$$

$$V_x = \frac{R_1}{R_1 + R_2 + R_3} = \frac{R_1}{R_1}$$

Where R_T is the total resistance of the chain $R_T = R_1 + R_2 + R_3$
Where R_T is the total resistance of the chain $R_T = R_1 + R_2 + R_3$

$$V_X$$
 is divided into $V_1 : V_2 : V_3$ in the proportions $R_1 : R_2 : R_3$
Approximate Voltage Divider:
If $I_Y = 0$, then $V_Y = \frac{R_A}{R_A + R_B} V_X$.
If $I_Y \ll I$, then $V_Y \approx \frac{R_A}{R_A + R_B} V_X$.

Parallel Resistors: Current Divider

• Parallel resistors all share the same V.

$$I_{1} = \frac{V}{R_{1}} = V \ G_{1} \qquad \text{where} \qquad G_{1} = \frac{1}{R_{1}} \qquad \text{is the conductance of } R_{1}.$$

$$I_{X} = I_{1} + I_{2} + I_{3} \qquad \qquad I_{X} \qquad I_{X} \qquad \qquad I_{X} \qquad \qquad I_{X} \qquad I_{X} \qquad \qquad I_{X} \qquad I_{X}$$

where $G_P = G_1 + G_2 + G_3$ is the total conductance of the parallel resistors.

 I_X is divided into $I_1 : I_2 : I_3$ in the proportions $G_1 : G_2 : G_3$.

Equivalent Resistance: Series

• We know that

$$V = V_1 + V_2 + V_3 = I \ (R_1 + R_2 + R_3) = I \ R_T$$

 So we can replace the three resistors by a single equivalent resistor of value R_T without affecting the relationship between V and I.

- Replacing series resistors by their equivalent resistor will not affect any of the voltages or currents in the rest of the circuit.
- However the individual voltages V_1 , V_2 and V_3 are no longer accessible.

Equivalent Resistance: Parallel

- Similarly we known that $I = I_1 + I_2 + I_3 = V (G_1 + G_2 + G_3) = V G_P$
- So $V = I R_P$ where $R_P = \frac{1}{G_F} = \frac{1}{G_1 + G_2 + G_3} = \frac{1}{\frac{1}{R_1 + \frac{1}{R_2} + \frac{1}{R_3}}}$
- We can use a single equivalent resistor of resistance R_P without affecting the relationship between V and I.
- Replacing parallel resistors by their equivalent resistor will not affect any of the voltages or currents in the rest of the circuit.
- R_4 and R_5 are also in parallel.
- Much simpler although none of the original currents I₁, ••••, I₃ are now implicitly specified.

Equivalent Resistance: Parallel Formulae

• For parallel resistors $G_P = G_1 + G_2 + G_3$

or equivalently $R_P = R1 || R2 || R3 = \frac{1}{\frac{1}{R_1 + \frac{1}{R_2} + \frac{1}{R_3}}}$ These formulae work for any number of

- These formulae work for any number of ^{R1} resistors.
- For the special case of two parallel resistors

$$R_P = \frac{1}{\frac{1}{R_1 + \frac{1}{R_2}}} = \frac{R_1 R_2}{R_1 + R_2}$$
 ("product over sum")

• If one resistor is a multiple of the other

Suppose $R_2 = kR_1$, then

$$R_P = \frac{R_1 R_2}{R_1 + R_2} = \frac{k R_1^2}{(k+1)R_1} = \frac{k}{k+1} R_1 = (1 - \frac{1}{k+1}) R_1$$

- Example: $1 k\Omega || 99 k\Omega = \frac{99}{100} k\Omega = (1 \frac{1}{100}) k\Omega$
- Important: The equivalent resistance of parallel resistors is always less than any of them.

Simplifying Resistor Networks

 Many resistor circuits can be simplified by alternately combining series and parallel resistors.

Series: $2 k\Omega + 1 k\Omega = 3 k\Omega$

Parallel: $3 k\Omega \parallel 7 k\Omega = 2.1 k\Omega$ Parallel: $2 k\Omega \parallel 3 k\Omega = 1.2 k\Omega$

Series: 2.1 kΩ + 1.2 kΩ = 3.3 kΩ

 Sadly this method does not always work: there are no series or parallel resistors here.

Example of a voltage divider

- Using two resistors R1 and R2, connected to a voltage source 9V, we can produce any voltage between 0V and the battery source voltage of 9V
- In this example, R1 and R2 are connected in series. The total resistance is 3kΩ
- The current I through the two resistors is therefore 9V/3k = 3mA.
- Therefore the voltage across
 R2 is: V₂ = I x R₂ = 6V
- The voltage across R1 is 3V

This is called a voltage divider because R1 and R2 effectively divide the 9V into two parts!

Non-ideal Voltage Source

- An ideal battery has a characteristic that is vertical: battery voltage does not vary with current.
- Normally a battery is supplying energy so V and I have opposite signs, so I ≤ 0.
- An real battery has a characteristic that has a slight positive slope: battery voltage decreases as the (negative) current increases.
- Model this by including a small resistor in series. $V = V_B + IR_B$.
- The equivalent resistance for a battery increases at low temperatures.

Summary

- Identify resistor values
- Series and Parallel components
- Voltage and Current Dividers
- Simplifying Resistor Networks
- Battery Internal Resistance